It seemed like for a while the biggest fitness craze was core stability training with every fitness and rehab guru flooding the internet and social media with exercises using every combination of positions, movements, and equipment possible. I’m sure I saw someone doing quadruped bird dogs with ankle/wrist weights with a resistance band pulling them one way while maintaining balance on a BOSU ball that a buddy was unpredictably tapping to create perturbations on an unstable service. Yeah, exercises like that can be effective and meet the intent, but it doesn’t need to be that complicated. Additionally, oftentimes such exercises can be too challenging and complex for the “Average Joe”. In this article, we’ll dive into a simple way to progress trunk and core stability exercises. But first, let us quickly dive into a quick anatomy review and the why behind the importance of maintaining a strong trunk.

The trunk musculature can be divided into two categories based on their primary function: movers and stabilizers (note: each trunk muscle can have both a mover and stabilizer function but has a primary role of one over the other). The movers are the bigger muscles located more externally and primarily work to move the body in different directions. This includes the abdominals (flex the spine), paraspinals (extend the spine), and the obliques (side bend and rotate the spine). Stabilizers are deeper and function to maintain a spinal trunk position at rest and during movement. These include the transverse abdominis (TrA), quadratus lumborum (QL), and the lumbar multifidi (LM) muscles.

When looking at the trunk and reviewing its function, it helps to view the entire system as a three-dimensional cylinder around the spine and guts. The abs and anterior portion of the TrA comprise the front of the cylinder, the obliques with the lateral TrA fibers make up the outer walls, and the LM and paraspinals solidify the backside. Like a soda can, this cylinder also has a top (diaphragm) and a bottom (pelvic floor musculature). A healthy and properly functioning cylinder will be able to generate pressure against all walls within it, locking down and stabilizing the trunk during exertion (like the stiffness of a full unopened soda can). A poorly pressured cylinder will not be as strong and stiff (like the walls of an empty opened can). Now, the cylinder does not need to be fully pressurized all day, everyday but only when needed to complete the task. And the amount of pressure generated can and should be based on the demand. For example, generating 100% pressure and stiffness is needed for a max deadlift effort but not for picking up an empty laundry basket. Having an appropriately pressurized cylinder will reduce injury risk by maintaining proper mechanics and evenly distributing the force to the right load-bearing structures.

Now, how do we initiate a trunk strengthening program correctly with a good progression? There are certainly different strategies and approaches out there. For the most part, there isn’t a necessarily “right” or “wrong” way as long as the exercise and dosing is appropriate for the person. For example, it may not be a good idea to perform heavy deadlifts right away for a deconditioned individual with acute low back pain. I personally view trunk strengthening progression as a three phase process:

Phase 1: Isometric holds maintaining a static position for a designated period of time, starting with a shorter time then increasing duration to build endurance and confidence. Examples include front planks, side planks, and back bridges.

Phase 2: Build off the isometric holds from Phase 1 by incorporating an unweighted or minimally resisted dynamic limb movement. The purpose is to train the trunk to remain stable and strong while moving the arms and legs. Examples include bird dogs, dead bugs, and rolling planks.

Phase 3: This phase is where I introduce more dynamic movements and heavier loads to challenge the trunk strength and endurance. These are oftentimes referred to as more “functional” exercises as they replicate natural movements and carry over to tasks we commonly perform during the day. With these exercises, the trunk is usually not the primary focus or working muscle group but serves more of  a supporting role (but extremely important, nonetheless!). Examples include kettlebell swings, deadlifts, and weighted carries.

Check out the videos below for examples of this outlined progression for the lateral and posterior trunk musculature.

 

 

As you can see, phasing a trunk strengthening program like above helps progressively build up the trunk strength and endurance appropriately. It doesn’t seem smart to overload a patient or client with heavy deadlifts if they aren’t able to hold a basic unweighted back bridge for more than ten seconds, right? Overloading a patient or client too soon without the proper baseline strength and endurance will increase injury risk, aggravate an existing injury, create frustration, and/or compromise trust with the provider/trainer. Let’s train and rehab smarter!

This isn’t rocket science but hopefully seeing a phased trunk strengthening progression is beneficial for you. The goal is to start small and progressively build strength and confidence while keeping it simple!

We oftentimes hear the phrase “pain is in your head” used to motivate others around us while suffering
through a physically intense endeavor. I frequently heard this or similar renditions while in the Army
during training events like our semi-annual fitness tests, long unit runs, and grueling ruck marches. The
meaning of statements like this is to reinforce the power of the mind over the body, to mentally fight
through the physical discomfort. However, it turns out that pain is actually experienced in our heads and
NOT actually where pain is felt. Pain truly is in our heads. Now bear with me as I elaborate.

You see, the painful body part is too “dumb” and not equipped to produce pain. Let’s use tweaking the
low back while lifting something heavy, for example. Within the tissues of the low back are special
receptors and nerves that simply detect whatever might be a threat to the body. This includes local
chemical responses from inflammation, exposure to high forces of pressure, and extreme heat or cold.
These nerves detect this stimulus but do not know how to utilize this information; however, they know
who does…. the brain! So, these low back nerves that detected a potential threat send a signal away
from the local area to the spinal cord which then relays the message up to the brain for further
processing. Once received, the brain makes note of where the message is coming from, what type of
message was received (a potential threat!), and the current situation (bending over picking up
something heavy). It quickly processes the message to produce the output of pain.

Believe it or not, pain is a blessing protecting us from further harm. If it wasn’t for pain, I wouldn’t be
able to detect the sharp rusty nail I am stepping on and quickly pull my foot away from it, preventing
getting tetanus. Without pain, I wouldn’t know if my appendix was about to rupture, potentially causing
a fatal event. Pain forces me to the doctor to get the appropriate treatment. Pain prevents us from
running on a sprained ankle, causing further harm to sensitive tissue. Without pain to protect us and
guide us, we wouldn’t have survived long as a species!

Not only can the brain receive and process information from pain receptors and nerves, it is also the
body’s headquarters for processing any and all information related to our senses, movement, internal
health, cognitive processing, emotional state, and overall well-being. The brain will use other information
to fine tune the output and can amplify, distort, or weaken the output based on this other data. It can
also suppress the pain output in a life or death situation. For example, a Soldier being shot in the arm in
combat may not realize it until after the firefight is over. During this scenario, the arm’s pain receptors
and nerves detected the threat and relayed the information to the brain for processing. However, the
brain quickly “decided” the arm is less threatening than the potentially fatal situation it was facing, so it
dampened the pain output to deal with it later, when not in a life and death situation.

Because the pain is processed in our heads as well as EVERYTHING else, there can be some crosstalk
between different processes simultaneously occurring that can greatly impact the pain output. For
example, a person with both chronic back pain and depression may experience more back pain if their
depression worsens. What is it about being more depressed that causes more back pathology? Nothing!
But because both the depression and the back pain are processed in the brain, they can oftentimes
negatively impact each other. The opposite is true, too. Feeling more hopeful and optimistic can have a positive effect on chronic pain. This is why managing chronic pain should include a holistic approach (a
topic certainly worth its own article).

Of course, the physiology of experiencing pain is much more complex than explained here, but hopefully
this simple description helps identify the complexity of pain and how it’s not necessarily all about the
painful body part. It’s important to remember this while going through the rehabilitation and recovery
process, especially when there is a lack of progress, worsening of symptoms, or when dealing with other
health issues simultaneously (physical, mental, spiritual, etc.).

So, in summary, the pain you and I feel is actually in our heads. No, we are not all crazy, and the pain
experienced is actual legit pain. We just need to remember this as we recover and heal as there can be
many other factors that can influence the rehab process and pain symptoms. By understanding and
acknowledging this, we are able to identify non-pathological reasons why pain may worsen, and this
gives us a little more control over what often seems to be an uncontrollable situation.

For more information, check out this 5-minute animated video: